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In today’s lecture we shift our focus towards optimization. Most of the material is an introduction
to common terminology and problem formulations. The main focus is convex optimization.

1 Standard Notation

Optimization problem:

P :

min
x∈Rn

f(x) ←− objective

s.t. gi(x) ≤ 0 i = 1, . . . ,m ←− inequality constraints
hj(x) = 0 j = 1, . . . , p ←− equality constraints

Feasible Set:
S =

{
x ∈ Rn

∣∣ gi(x) ≤ 0 and hj(x) = 0 for all i and j
}

So we could rewrite the optimization problem P more compactly as minx∈S f(x).

Some standard terminology:

“x is a feasible point”: x ∈ S

“P is feasible”: S ̸= ∅
“P is infeasible”: S = ∅ → by convention, we say the optimal cost is P⋆ = +∞

“P is unbounded”: the optimal cost is P⋆ = −∞

2 Affine/Linear Constraints

Constraints define the feasible set. Linear inequality constraints define half-spaces, which are all the
points on one side of a (n − 1)-dimensional affine space (which is also called a hyperplane). The
intersection of multiple linear constraints forms a polytope (sometimes called a polyhedron).

Figure 1: polytope

aT
1 x+ b1 ≤ 0

aT
2 x+ b2 ≤ 0

...

aT
mx+ bm ≤ 0

write compactly as: Ax+ b ≤ 0 (element-wise inequality)
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3 Quadratic Constraints

These types of constraints lead to ellipsoidal, hyperbolic, and parabolic sets. They take the
form:

xTQix+ 2pT
i x+ ri ≤ 0

If Q ⪰ 0, than the set is convex (more about this later!). Unlike linear constraints, these cannot be
combined into a compact form and must be written separately.

When solving optimization problems, it is very helpful for Q ≻ 0. This is true because most
optimization algorithms take small steps towards the minimum. If there are different regions in the
function like Figure 3 then this method because impossible.

(a) Q ≻ 0 in R2; an ellipse. (b) Q ≻ 0 in R3; an ellipsoid.

Figure 2: Positive-definite quadratic constraints (convex)

(a) Q indefinite in R2. (b) Q indefinite in R3.

Figure 3: indefinite quadratic constraints (non-convex)
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4 Defining Convex

We will define convexity for a set S and a function f . The definitions are related but their differences
will become important in future lectures.

A set S is convex if the line segment joining any two points in the set also belongs to the set.

αx+ (1− α)y︸ ︷︷ ︸
convex combination

∈ S for all x, y ∈ S and α ∈ [0, 1]

Figure 4: convex combination

If S1 and S2 are convex, then S1 ∩ S2 is convex. Note that S1 ∪ S2 is not necessarily convex. This
can be seen in Fig. 5. Any line two points in the intersection can be connected with a line.

Figure 5: convex intersection and union

A function f is convex if for all pairs of points on the graph of the function, the line segment
connecting them lies above the graph.

f(αx+ (1− α)y) ≤ αf(x)− (1− α)f(y) for all x, y ∈ Rn and α ∈ [0, 1]

A function f is concave if −f is convex. Some examples:

• convex: x2, ex, e−x, 1
x for x > 0.

• concave: −x4, log(x) for x > 0, 1
x for x < 0.

The only functions that are both concave and convex are linear functions.
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(a) Convex function (b) Non-convex function

(c) Convex function in R2 that is not smooth. (d) Convex function in R3.

Figure 6: convex function examples

5 Convexity relationships

For the definitions below, assume f : Rn → R.

Graph of f . The graph of a function is the set of pairs of points consisting of a point from the
domain and the corresponding value of the function at that point.

graph of f :
{
(x, t) ∈ Rn+1

∣∣ f(x) = t
}

Sublevel sets of f . The sublevel sets of a function are similar to the contour lines in an elevation
map. A contour line represents points where the function value is the same.

sublevel set of f at level t : {x ∈ Rn | f(x) ≤ t}

Epigraph of f : The epigraph of f is the set of points that lie above the graph of f .

epi(f) :
{
(x, t) ∈ Rn+1

∣∣ f(x) ≤ t
}
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(a) sublevel sets in R2 (b) sublevel sets in R3

(c) graph and epigraph of a function

Figure 7: Illustrations of the graph, epigraph, and sublevel sets of a function.

Key result: f is convex ⇐⇒ epi(f) is convex.

To prove this, first suppose f is convex and (x, t), (y, τ) ∈ epi(f). Then,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ αt+ (1− α)τ

Where we used the fact that f(x) ≤ t and f(y) ≤ τ and α ∈ [0, 1]. We can now conclude that(
αx+ (1− α)y, αt+ (1− α)τ

)
∈ epi(f), so epi(f) is a convex set.

Conversely, suppose f is not convex, then there exists x, y ∈ Rn and α ∈ [0, 1] such that

f(αx+ (1− α)y) > αf(x) + (1− α)f(y) (1)

Consider the points (x, f(x)), (y, f(y)) ∈ epi(f). We have:

α(x, f(x)) + (1− α)(y, f(y)) =
(
αx+ (1− α)y, αf(x) + (1− α)f(y)

)︸ ︷︷ ︸
/∈epi(f) because of Eq. (1).

This idea is show graphically in Fig. 8.
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Figure 8: non-convex epigraph

Second key result: f is convex =⇒ sublevel sets of (f) are convex. The proof is similar to
that of the previous result.

The converse direction is not true in general. In other words, if a function has convex sublevel sets,
the function is not necessarily convex. For counterexamples, see Fig. 9.

A function whose sublevel sets are convex is called quasi-convex. So convex functions are quasi-
convex, but quasi-convex functions are not necessarily convex.

Figure 9: Not all convex sublevel sets are generated by convex functions.
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6 Polytope representations

The convex hull of a set of points is the smallest convex set that contains all the points.

conv{x1, . . . , xm} =

{
m∑
i=1

λixi

∣∣∣∣∣ λ1 + · · ·+ λm = 1 and λi ≥ 0

}
(2)

This is a general version of a convex combination. Another way to think about the convex hull is
that it is the set of all convex combinations of the given set of points. The convex hull of a finite
set of points is a polytope. For an illustration, see Fig. 10.

Figure 10: from a set to a convex hull

Faces vs. vertices. We have seen two different representations of polytopes now:

• As an intersection of half-spaces (face representation): {x ∈ Rn | Ax ≤ b}

• As the convex hull of a set of points (vertex representation): conv{x1, . . . , xm}.

Depending on the context, sometimes the face representation is better, and other times the vertex
representation is better. For example,

• A hypercube consists of the inequalities −1 ≤ xi ≤ 1. Such a shape has 2n faces, but 2n

vertices. So representing a hypercube as a convex hull would require much more memory.

• A hyper-octahedron is the convex hull of the vertices ±ei. such a shape has 2n vertices, but
2n faces. For example, there is a large difference between a cube and an octahedron. So
representing a hyper-octahedron as a set of inequalities would require much more memory.
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