ME 7247: Advanced Control Systems

Fall 2022-23

Lecture 17: Convex Optimization
Nov 4 2022

Lecturer: Laurent Lessard Scribe: Tony Smoragiewicz

In today's lecture we shift our focus towards optimization. Most of the material is an introduction to common terminology and problem formulations. The main focus is convex optimization.

1 Standard Notation

Optimization problem:

$$P: \qquad \begin{array}{ll} \displaystyle \min_{x \in \mathbb{R}^n} & f(x) & \longleftarrow \text{ objective} \\ \\ s.t. & g_i(x) \leq 0 \quad i = 1, \ldots, m \quad \longleftarrow \text{ inequality constraints} \\ \\ & h_j(x) = 0 \quad j = 1, \ldots, p \quad \longleftarrow \text{ equality constraints} \end{array}$$

Feasible Set:

$$S = \left\{ x \in \mathbb{R}^n \mid g_i(x) \le 0 \text{ and } h_j(x) = 0 \text{ for all } i \text{ and } j \right\}$$

So we could rewrite the optimization problem P more compactly as $\min_{x \in S} f(x)$.

Some standard terminology:

"x is a feasible point": $x \in S$ "P is feasible": $S \neq \emptyset$ "P is infeasible": $S = \emptyset \rightarrow$ by convention, we say the optimal cost is $P_{\star} = +\infty$ "P is unbounded": the optimal cost is $P_{\star} = -\infty$

2 Affine/Linear Constraints

Constraints define the feasible set. Linear inequality constraints define half-spaces, which are all the points on one side of a (n-1)-dimensional affine space (which is also called a hyperplane). The intersection of multiple linear constraints forms a polytope (sometimes called a polyhedron).

$$a_1^\mathsf{T} x + b_1 \le 0$$

$$a_2^\mathsf{T} x + b_2 \le 0$$

$$\vdots$$

$$a_m^\mathsf{T} x + b_m \le 0$$

write compactly as: $Ax + b \le 0$ (element-wise inequality)

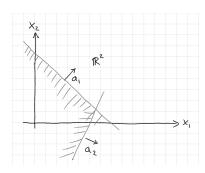


Figure 1: polytope

3 Quadratic Constraints

These types of constraints lead to ellipsoidal, hyperbolic, and parabolic sets. They take the form:

$$x^{\mathsf{T}}Q_ix + 2p_i^{\mathsf{T}}x + r_i \le 0$$

If $Q \succeq 0$, than the set is convex (more about this later!). Unlike linear constraints, these cannot be combined into a compact form and must be written separately.

When solving optimization problems, it is very helpful for $Q \succ 0$. This is true because most optimization algorithms take small steps towards the minimum. If there are different regions in the function like Figure 3 then this method because impossible.

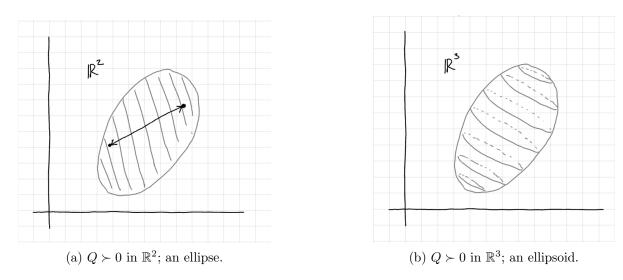


Figure 2: Positive-definite quadratic constraints (convex)

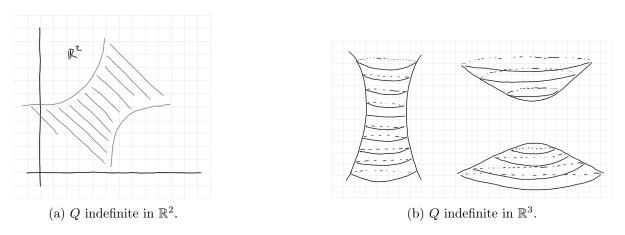


Figure 3: indefinite quadratic constraints (non-convex)

4 Defining Convex

We will define convexity for a set S and a function f. The definitions are related but their differences will become important in future lectures.

A set S is convex if the line segment joining any two points in the set also belongs to the set.

$$\underbrace{\alpha x + (1-\alpha)y}_{\text{convex combination}} \in S \quad \text{ for all } x,y \in S \text{ and } \alpha \in [0,1]$$

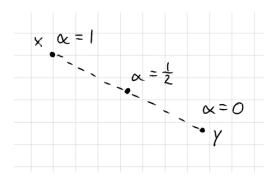


Figure 4: convex combination

If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex. Note that $S_1 \cup S_2$ is not necessarily convex. This can be seen in Fig. 5. Any line two points in the intersection can be connected with a line.

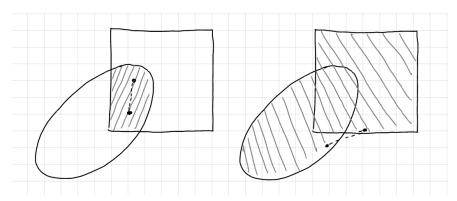


Figure 5: convex intersection and union

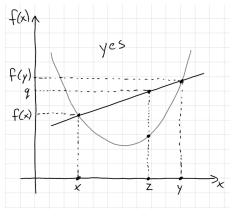
A function f is convex if for all pairs of points on the graph of the function, the line segment connecting them lies above the graph.

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) - (1 - \alpha)f(y)$$
 for all $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$

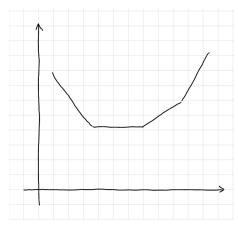
A function f is **concave** if -f is convex. Some examples:

- convex: x^2 , e^x , e^{-x} , $\frac{1}{x}$ for x > 0.
- concave: $-x^4$, $\log(x)$ for x > 0, $\frac{1}{x}$ for x < 0.

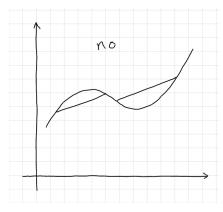
The only functions that are both concave and convex are linear functions.



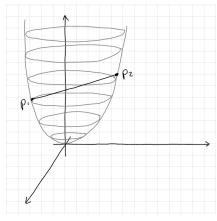
(a) Convex function



(c) Convex function in \mathbb{R}^2 that is not smooth.



(b) Non-convex function



(d) Convex function in \mathbb{R}^3 .

Figure 6: convex function examples

5 Convexity relationships

For the definitions below, assume $f: \mathbb{R}^n \to \mathbb{R}$.

Graph of f. The *graph* of a function is the set of pairs of points consisting of a point from the domain and the corresponding value of the function at that point.

graph of
$$f: \{(x,t) \in \mathbb{R}^{n+1} \mid f(x) = t\}$$

Sublevel sets of f. The *sublevel sets* of a function are similar to the contour lines in an elevation map. A contour line represents points where the function value is the same.

sublevel set of
$$f$$
 at level $t:\{x\in\mathbb{R}^n\mid f(x)\leq t\}$

Epigraph of f: The epigraph of f is the set of points that lie above the graph of f.

$$epi(f): \left\{ (x,t) \in \mathbb{R}^{n+1} \mid f(x) \le t \right\}$$

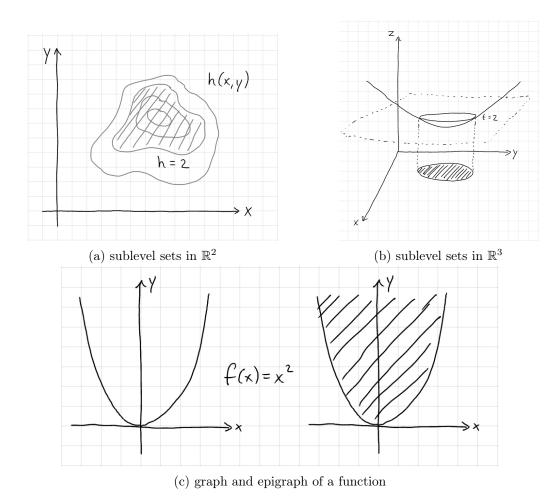


Figure 7: Illustrations of the graph, epigraph, and sublevel sets of a function.

Key result: f is convex \iff epi(f) is convex.

To prove this, first suppose f is convex and $(x,t), (y,\tau) \in \operatorname{epi}(f)$. Then,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \le \alpha t + (1 - \alpha)\tau$$

Where we used the fact that $f(x) \leq t$ and $f(y) \leq \tau$ and $\alpha \in [0,1]$. We can now conclude that $(\alpha x + (1-\alpha)y, \alpha t + (1-\alpha)\tau) \in \operatorname{epi}(f)$, so $\operatorname{epi}(f)$ is a convex set.

Conversely, suppose f is not convex, then there exists $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ such that

$$f(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y) \tag{1}$$

Consider the points $(x, f(x)), (y, f(y)) \in epi(f)$. We have:

$$\alpha(x,f(x)) + (1-\alpha)(y,f(y)) = \underbrace{\left(\alpha x + (1-\alpha)y, \alpha f(x) + (1-\alpha)f(y)\right)}_{\notin \operatorname{epi}(f) \text{ because of Eq. (1)}}$$

This idea is show graphically in Fig. 8.

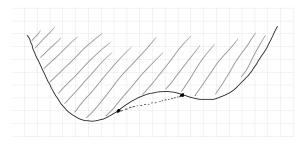


Figure 8: non-convex epigraph

Second key result: f is convex \implies sublevel sets of (f) are convex. The proof is similar to that of the previous result.

The converse direction is *not true* in general. In other words, if a function has convex sublevel sets, the function is not necessarily convex. For counterexamples, see Fig. 9.

A function whose sublevel sets are convex is called *quasi-convex*. So convex functions are quasi-convex, but quasi-convex functions are not necessarily convex.

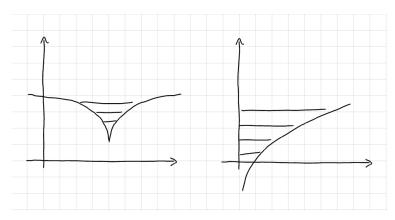


Figure 9: Not all convex sublevel sets are generated by convex functions.

6 Polytope representations

The convex hull of a set of points is the smallest convex set that contains all the points.

$$\operatorname{conv}\{x_1, \dots, x_m\} = \left\{ \sum_{i=1}^m \lambda_i x_i \mid \lambda_1 + \dots + \lambda_m = 1 \text{ and } \lambda_i \ge 0 \right\}$$
 (2)

This is a general version of a convex combination. Another way to think about the convex hull is that it is the set of all convex combinations of the given set of points. The convex hull of a finite set of points is a polytope. For an illustration, see Fig. 10.

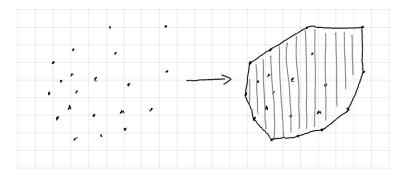


Figure 10: from a set to a convex hull

Faces vs. vertices. We have seen two different representations of polytopes now:

- As an intersection of half-spaces (face representation): $\{x \in \mathbb{R}^n \mid Ax \leq b\}$
- As the convex hull of a set of points (vertex representation): $conv\{x_1,\ldots,x_m\}$.

Depending on the context, sometimes the face representation is better, and other times the vertex representation is better. For example,

- A hypercube consists of the inequalities $-1 \le x_i \le 1$. Such a shape has 2n faces, but 2^n vertices. So representing a hypercube as a convex hull would require much more memory.
- A hyper-octahedron is the convex hull of the vertices $\pm e_i$. such a shape has 2n vertices, but 2^n faces. For example, there is a large difference between a cube and an octahedron. So representing a hyper-octahedron as a set of inequalities would require much more memory.